x +
=>3.(x+\(\frac{3}{2}\))=3.(1+\(\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2006}}\))
=>3(x+\(\frac{3}{2}\))=3+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
=>3(x+\(\frac{3}{2}\))-(x+\(\frac{3}{2}\))=(3+\(1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\))-(
=>2(x+\(\frac{3}{2}\))=3-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}}{3^{2006}}\)-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}-1}{3^{2006}}\)
=>x+\(\frac{3}{2}\)=\(\frac{3^{2007}-1}{3^{2006}}:2\)
=>x+\(\frac{3}{2}=\frac{3^{2007}-1}{3^{2006}.2}\)
=>x=\(\frac{3^{2007}-1}{3^{2006}.2}-\frac{3}{2}\)