|x+1/2|>=0
(y-4)4>=0
Do đó: |x+1/2|+(y-4)4>=0 với mọi x,y
mà |x+1/2|+(y-4)4<0
nên \(\left(x,y\right)\in\varnothing\)
|x+1/2|>=0
(y-4)4>=0
Do đó: |x+1/2|+(y-4)4>=0 với mọi x,y
mà |x+1/2|+(y-4)4<0
nên \(\left(x,y\right)\in\varnothing\)
Tính giá trị biểu thức:
A= \(\dfrac{\text{(a+1)(a+2)(a+3)....(a+2003)(a+2004)}}{\left(b+5\right)\left(b+6\right)\left(b+7\right)....\left(b+2006\right)\left(b+2007\right)}\) tại a= 0, b= -4
B= \(\dfrac{1}{\left(x-5\right)\left(y+7\right)}+\dfrac{1}{\left(x-4\right)\left(y+8\right)}+....+\dfrac{1}{\left(x-1\right)\left(y+11\right)}\)tại x= 6, y= -5
b1
a) Tính gt của biểu thức : \(6x^2+5x-2\)
tại x thỏa mãn \(\left|x-2\right|=1\)
b) Tìm x,y,z biết : \(\dfrac{x-1}{2}=\dfrac{y-3}{4}=\dfrac{z-2}{3}\)
và x-3y+4z=4
helppppppppppppppppppppppppppppppppppppppppppppppp
A = \(\dfrac{x^2\left(x^2+2y\right)\left(x^2-2y\right)\left(x^4+2y^4\right)\left(x^8+2y^8\right)}{x^{16}+2y^{16}}\) với x = 4 ; y = 8
Tìm x: \(\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{2}{3}\right|+\left|x+\dfrac{2}{5}\right|+\left|x+\dfrac{3}{2}\right|=33x\)
1.Tìm GTNN
B = \(\left(x+2\right)^2\)+\(\left(y-\dfrac{1}{5}\right)^2\) -10
C=\(\left(x+3\right)^4+1\)
D = \(x^2-4x+15\)
2.Tìm GTLN
B = \(\dfrac{4}{\left(2x+3\right)^2+15}\)
Tìm x biết:
1) \(\left(5-x\right)\left(x^2+5x+25\right)-x\left(x+4\right)\left(4-x\right)=-51\)
2) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
a, tìm giá trị lớn nhất của biểu thức A=\(\dfrac{3}{\left(x+2\right)^2+4}\)
b, tìm giá trị nhỏ nhất của biểu thức B=\(\left(x+1\right)^2+\left(y+3\right)^2+1\)
Cho \(f\left(x\right)=x^2+x\)
Tính \(\dfrac{1}{f\left(1\right)}+\dfrac{1}{f\left(2\right)}+\dfrac{1}{f\left(3\right)}+...+\dfrac{1}{f\left(2014\right)}+\dfrac{1}{f\left(2015\right)}\)
Cho \(x;y;z\ne0\) và \(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\)
Tính \(P=\left(1+\dfrac{x}{y}\right)+\left(1+\dfrac{y}{z}\right)+\left(1+\dfrac{z}{x}\right)\)