(2x + 5 )2 + (4x+10)(3-x) + x2-6x+9=0
=>(2x+5)2_ 2(2x+5)(x-3) + (x-3)2=0
=>[(2x+5)-(x-3)]2 =0
=>(x+8)2=0
=> x+8=0
=> x=-8
(2x + 5 )2 + (4x+10)(3-x) + x2-6x+9=0
=>(2x+5)2_ 2(2x+5)(x-3) + (x-3)2=0
=>[(2x+5)-(x-3)]2 =0
=>(x+8)2=0
=> x+8=0
=> x=-8
Tìm x biết
a) \(4x^2-12x=-9\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
A)\(^{ }\left(^{ }x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)
B)\(^{ }\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)
C)\(^{ }x^2-6x+11=0\)
D)(\(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)
Giải phương trình:
a, \(2x^3+3x^2+6x+5=0\) b, \(4x^4+12x^3+5x^2-6x-15=0\) c, \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=40\)Tìm x, biết
a) \(x^3-16x=0\)
b) \(\left(2x-3\right)^2=\left(x+5\right)^2\)
c) \(x^2\left(x-1\right)-4x^2+8x-4=0\)
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
1,phân tích đa thức thành nhân tử
a,\(^{x^2-2x+2y-xy}\)
b,\(\left(x^2+1\right)^2-4x^2\)
2,tìm x,biết:
\(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
giúp mk vs mai nộp rùi hu hu
Tìm x ?
\(x^3+27+\left(x+3\right).\left(x-9\right)=0\)
\(2x^2-x-6=0\)
giải phương trình
1. \(\frac{2x+3}{5x-3}\)-\(\frac{3}{4x-6}\)=\(\frac{2}{5}\)
2. \(\frac{1}{x-1}\)-\(\frac{7}{x-2}\)=\(\frac{1}{\left(x-1\right)\left(2-x\right)}\)
3. x+\(\frac{x-1}{x-2}\)=3+\(\frac{1}{x-2}\)
4. \(\frac{x+1}{x-3}\)-\(\frac{1}{x-1}\)=\(\frac{2}{\left(x-1\right)\left(x-3\right)}\)
5. \(\frac{2x-1}{x+1}+\frac{x}{\left(x-1\right)\left(x-2\right)}=\frac{6x-2}{x-2}\)