\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}-\dfrac{1}{x}=2010\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}-\dfrac{1}{x}=\dfrac{1}{2010}\)\(\Rightarrow\dfrac{-1}{x+3}=\dfrac{1}{2010}\)
\(\Rightarrow x+3=-2010\)
\(\Rightarrow x=-2013\)
Vậy x = -2013
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}-\dfrac{1}{x}=\dfrac{1}{2010}\)
=> \(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}-\dfrac{1}{x}=\dfrac{1}{2010}\)
=> \(-\dfrac{1}{x+3}=\dfrac{1}{2010}\)
=> \(-2010=x+3\)
=> \(x=-2013\)