\(a.\frac{x+5}{2021}+\frac{x+6}{2020}+\frac{x+7}{2019}=-3\\ \Leftrightarrow\frac{x+5}{2021}+1+\frac{x+6}{2020}+1+\frac{x+7}{2019}+1=0\\ \Leftrightarrow\frac{x+2026}{2021}+\frac{x+2026}{2020}+\frac{x+2026}{2019}=0\\ \Leftrightarrow\left(x+2026\right)\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\right)=0\\\Leftrightarrow x+2026=0\left(Vi\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\ne0\right)\\ \Leftrightarrow x=-2026\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2026\right\}\)
\(b.\frac{2-x}{100}-1=\frac{1-x}{101}-\frac{x}{102}\\ \Leftrightarrow\frac{2-x}{100}+1=\frac{1-x}{101}+1+1-\frac{x}{102}\\\Leftrightarrow \frac{102-x}{100}-\frac{102-x}{101}-\frac{102-x}{102}=0\\ \Leftrightarrow\left(102-x\right)\left(\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\right)=0\\ \Leftrightarrow102-x=0\left(Vi\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\ne0\right)\\ \Leftrightarrow x=102\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{102\right\}\)
c/ PT tương đương
\(\frac{x+1}{93}-1+\frac{x-2}{45}-2+\frac{x+4}{32}-3=0\)
\(\Leftrightarrow\frac{x-92}{93}+\frac{x-92}{45}+\frac{x-92}{32}=0\)
\(\Leftrightarrow\left(x-92\right)\left(\frac{1}{93}+\frac{1}{45}+\frac{1}{32}\right)=0\Rightarrow x=92\)
b/ PT tương đương :
\(\frac{1-x}{101}+1-\frac{x}{102}+1+\frac{x-2}{100}-1=0\)
\(\Leftrightarrow\frac{102-x}{101}-\frac{x-102}{102}+\frac{x-102}{100}=0\)
\(\Leftrightarrow\left(x-102\right)\left(-\frac{1}{101}-\frac{1}{102}+\frac{1}{100}\right)=0\)
Vì \(-\frac{1}{101}-\frac{1}{102}+\frac{1}{100}\ne0\Rightarrow x-102=0\Leftrightarrow x=102\)