a) \(x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
b)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=3\end{array}\right.\)
a) x2 +x -6 = x2 -2x +2x +x -6 = 0
x( x-2) + 3(x-2) = 0
(x-2)(x +3) = 0
x = 2 ; x = -3
b) x2 -2x -3 = x2 + x - x -2x -3 = 0
x(x-1) + 3(x-1) = 0
(x+1)(x-3) = 0
x = -1 ; x = 3
a) \(\Delta=1^2-4.1.\left(-6\right)=25>0\left(PTC2NPB\right)\)
\(X_1=\frac{-1+\sqrt{25}}{2}=2\)
\(X_2=\frac{-1-\sqrt{25}}{2}=-3\)
b) \(\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16>0\left(PTC2NPB\right)\)
\(X_1=\frac{2+\sqrt{16}}{2}=3\)
\(X_2=\frac{2-\sqrt{16}}{2}=-1\)