\(\Leftrightarrow4x^2+2x+\dfrac{1}{4}-1+4x-4x^2=2\)
\(\Leftrightarrow6x=\dfrac{11}{4}\)
\(\Leftrightarrow x=\dfrac{11}{24}\)
\(\Leftrightarrow4x^2+2x+\dfrac{1}{4}-1+4x-4x^2=2\)
\(\Leftrightarrow6x=\dfrac{11}{4}\)
\(\Leftrightarrow x=\dfrac{11}{24}\)
Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
1, Tìm x biết: \(\dfrac{2}{x-1}>1\)
2, Rút gọn: \(A=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
a) Với giá trị nào của x biểu thức sau vô nghĩa? Tìm TXĐ của biểu thức:
\(\dfrac{5x}{x+2}\) - \(\dfrac{3}{x-1}\) + \(\dfrac{x^2+1}{\left(x-1\right)\left(x+2\right)}\)
b) Giải phương trình:
\(\dfrac{5x-2}{12}\) - \(\dfrac{2x^2+1}{8}\) = \(\dfrac{x-3}{6}\) + \(\dfrac{1-x^2}{4}\)
Tìm TXĐ của cả 2 biểu thức sau, rồi tìm giá trị của x để giá trị của 2 biểu thức = nhau:
\(\dfrac{x+2}{x+3}\) - \(\dfrac{x+1}{x-1}\) và \(\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
Bài 1:Giải các pt chứa ẩn ở mẫu sau:
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\) b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) c)\(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
d)\(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\) e)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) g)\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
h)\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\) j)\(\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{50-2x^2}=\dfrac{7}{6\left(x+5\right)}\) k)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
n)\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
Cho biểu thức :
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(\left(x-2\right)+\dfrac{10-x^2}{x+2}\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A tại \(x\) , biết \(\left|x\right|=\dfrac{1}{2}\)
c) Tìm giá trị của \(x\) để \(A< 0\)
Tìm x biết
a) \((x-2)(x+1)+(x-2)(3-x)=0\)
b) \(\dfrac{x^2+1}{x^2+3}.\dfrac{(2x-5)(x^2+3)}{x^2+1}=5\)
Cho A = \(\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x^2-5x}\)
Tìm các giá trị nguyên của x để B = A * \(\dfrac{x+1}{x-1}\)