\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
\(\Rightarrow2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=120\)
\(\Rightarrow\left(1+2+4+8\right)\cdot2^x=120\)
\(\Rightarrow15\cdot2^x=120\)
\(\Rightarrow2^x=\dfrac{120}{15}=8=2^3\)
\(\Rightarrow x=3\)
Vậy............
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
\(=2^x.1+2^x.2^1+2^x.2^2+2^x.2^3=120\)
\(=2^x.1+2^x.2+2^x.4+2^x.8=120\)
\(=2^x\left(1+2+4+8\right)=120\)
\(=2^x.15=120\)
\(2^x=120:15=8\)
\(2^x=2^3\Leftrightarrow x=3\)