\(\Leftrightarrow3\left(x^2-4x+4\right)-\dfrac{5}{4}\left(9x^2+6x+1\right)=\dfrac{4}{3}\left(-x^2+4x-3\right)-\dfrac{7}{6}x\left(x-3\right)\)
\(\Leftrightarrow3x^2-12x+12-\dfrac{45}{4}x^2-\dfrac{15}{2}x-\dfrac{5}{4}=-\dfrac{4}{3}x^2+\dfrac{16}{3}x-4-\dfrac{7}{6}x^2+\dfrac{7}{2}x\)
\(\Leftrightarrow x^2\cdot\dfrac{-33}{4}-\dfrac{39}{2}x+\dfrac{43}{4}+\dfrac{5}{2}x^2-\dfrac{53}{6}x+4=0\)
\(\Leftrightarrow x^2\cdot\dfrac{-23}{4}-\dfrac{85}{3}x+\dfrac{59}{4}=0\)
\(\Leftrightarrow12\left(\dfrac{-23}{4}x^2-\dfrac{85}{3}x+\dfrac{59}{4}\right)=0\)
\(\Leftrightarrow-69x^2-340x+177=0\)
\(\Leftrightarrow69x^2+340x-177=0\)
\(\text{Δ}=340^2-4\cdot69\cdot\left(-177\right)=164452\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-170-\sqrt{41113}}{69}\\x_2=\dfrac{-170+\sqrt{41113}}{69}\end{matrix}\right.\)