1, HSXĐ<=>\(\dfrac{1-\cos3x}{1+\sin4x}\)≥0
<=>1+\(\sin\)4x≠0
<=>\(\sin\)4x≠-1
<=>x≠-π/8 +kπ/2
2, tương tự
1, HSXĐ<=>\(\dfrac{1-\cos3x}{1+\sin4x}\)≥0
<=>1+\(\sin\)4x≠0
<=>\(\sin\)4x≠-1
<=>x≠-π/8 +kπ/2
2, tương tự
tìm tập xác định của hàm số
1.y=\(cot\left(\dfrac{\pi}{3}-x\right)\)
2.y=\(\dfrac{tan2x-1}{\sqrt{1+sinx}+1}\)
3.y=\(\sqrt{\sqrt{1+sinx}-\sqrt{2}}\)
4.y=\(\dfrac{3cos4x-3}{\sqrt{2-2cosx}-2}\)
5.y=\(\dfrac{1-cot3x}{1-\sqrt{1+sin3x}}\)
6.y=\(cot2x+cotx\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Tìm txđ của hàm số sau:
1, \(y=sin\sqrt{\dfrac{1+x}{1-x}}\)
2,\(y=\sqrt{\dfrac{sinx+2}{cosx+1}}\)
3,\(y=\dfrac{2}{cosx-cos3x}\)
Tìm tập xác định của hàm số sau
a) y=cot(\(3x+\dfrac{\pi}{6}\)) + \(\dfrac{tan2x}{sinx+1}\)
b) y=\(\sqrt{5+2cot^2x-sinx}\) + cot\(\left(\dfrac{\pi}{2}+x\right)\)
Tìm txđ của hàm số sau
a, \(y=3tan\left(2x+3\right)\)
b, \(y=cot\left(\dfrac{x}{3}+\dfrac{\pi}{4}\right)\)
tìm tập xác định\(y=\dfrac{1}{\left(\cos\dfrac{x}{2}-3\right)\left(\tan x-\sqrt{3}\right)}\)
\(y=\sqrt{1+\cot^22x}\)
Tìm tập xác định của hàm số: y = \(\dfrac{1}{\sqrt{\dfrac{1}{2}-\dfrac{tan^{2}x-2}{tan^{2}x-1}}}\)
Tìm tập xác định của các hàm số :
a) \(y=\sqrt{\cos x+1}\)
b) \(y=\dfrac{3}{\sin^2x-\cos^2x}\)
c) \(y=\dfrac{2}{\cos x-\cos3x}\)
d) \(y=\tan x+\cot x\)
Xđ tính chẵn ,lẻ và tìm TXđ
1,y= cot.4.x
2.|cot .x|
3,y=1-sin 2.x
4,y= sin (x+pi /4) 5.y= x2.tan2x- cot.x 6.\(\dfrac{cos.2x}{1+sin^23.x}\) 7.y=\(\dfrac{sin.x+1}{cos.x}\) 8.y= 1+|cot .x + tan.x|