Gọi \(M\left(m;0\right)\)
\(d\left(M;\Delta_1\right)=d\left(M;\Delta_2\right)\Leftrightarrow\frac{\left|m-1\right|}{\sqrt{1^2+0}}=\frac{\left|m-1\right|}{\sqrt{1^2+\left(-1\right)^2}}\)
\(\Leftrightarrow m=1\Rightarrow M\left(1;0\right)\)
Gọi \(N\left(0;n\right)\)
\(d\left(N;\Delta_1\right)=d\left(N;\Delta_2\right)\Leftrightarrow\frac{\left|-1\right|}{\sqrt{1}}=\frac{\left|-n-1\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|n+1\right|=\sqrt{2}\Rightarrow\left[{}\begin{matrix}n=-1+\sqrt{2}\\n=-1-\sqrt{2}\end{matrix}\right.\)
Có 2 điểm N thỏa mãn: \(\left[{}\begin{matrix}N\left(0;-1+\sqrt{2}\right)\\N\left(0;-1-\sqrt{2}\right)\end{matrix}\right.\)