Lấy x1,x2 thuộc đoạn (1;2) sao cho x1<x2
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}\)
\(=\dfrac{-x_1^2+\left(m-1\right)\cdot x_1+2+x_2^2-\left(m-1\right)\cdot x_2-2}{x_1-x_2}\)
\(=-\left(x_1-x_2\right)+\left(m-1\right)\)
\(x_1< x_2\) nen \(x_1-x_2< 0\)
=>\(-\left(x_1-x_2\right)>0\)
Để A<0 thì m-1<0
hay m<1