Cho hàm số f(x) xác định với mọi x khác 0, nếu:
\(f\left(1\right)=1\)
\(f\left(\dfrac{1}{x}\right)=\dfrac{1}{x^2}f\left(x\right)\)
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
với \(x_1,x_2,x_1+x_2\) khác 0
Chứng minh rằng: \(f\left(\dfrac{5}{7}\right)=\dfrac{5}{7}\)
Bài 10. Xét tính đồng biến và nghịch biến của các hàm số sau trên các khoảng đã chỉ ra
a: \(f\left(x\right)=2x^2-4x+3\) trên các khoảng \(\left(3;+\infty\right)\) và (-10;1)
b: \(f\left(x\right)=-3x^2+6x+1\) trên các khoảng \(\left(1;+\infty\right)\) và (-10;-2)
c: \(f\left(x\right)=\dfrac{x}{x-2}\) trên khoảng \(\left(-\infty;2\right)\)
d: \(f\left(x\right)=-\dfrac{1}{x+1}\) trên các khoảng (-3;-2) và \(\left(-1;+\infty\right)\)
e: \(f\left(x\right)=x^{2020}+x^2-3\) trên khoảng \(\left(0;+\infty\right)\)
Cho \(y=f\left(x\right)=\left(m-1\right)x^2+\left(2m+1\right)x+3\). Tìm m để hàm số đồng biến trên \(\left(2;+\infty\right)\).
Bài 12:
Tìm các giá trị của tham số m để hàm số \(y=mx^2+2\left(m-1\right)x+2m+1\) nghịch biến trên (-1;2)
Bài 12. Tìm các giá trị của tham số m để hàm số \(y=mx^2+2\left(m-1\right)x+2m+1\) nghịch biến trên (-1;2)
Cho hàm số \(f\left(x\right)=\sqrt{x+2m-1}+\sqrt{4-2m-\dfrac{x}{2}}\) xác định với mọi \(x\in\left[0;2\right]\) khi \(m\in\left[a;b\right]\).Giá trị \(a+b\) ?
1, Tìm m để hàm số \(f\left(x\right)=\left(m-1\right)x+m^2-3\) đồng biến trên R
2, Tìm m để hàm số \(f\left(x\right)=-x^2+\left(m-1\right)x+2\) nghịch biến trên \(\left(1;+\infty\right)\)
xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
Tìm m để hàm số là hàm số chẵn
\(f\left(x\right)=\dfrac{x^2\left(x^2-2\right)+\left(2m^2-2\right)x}{\sqrt{x^2+1}-m}\)