\(11\times121^{1006}\le11^n\le11^{2015}\)
\(11\times\left(11^2\right)^{1006}\le11^n\le11^{2015}\)
\(11\times11^{2012}\le11^n\le11^{2015}\)
\(11^{2013}\le11^n\le11^{2015}\)
\(\Rightarrow2013\le n\le2015\)
\(\Rightarrow n\in\left\{2013;2014;2015\right\}\)
Chúc bn học tốt