\(\left(5n-8\right)⋮\left(n-3\right)\\ \Rightarrow\left[5\left(n-3\right)+7\right]⋮\left(n-3\right)\\ \left[5\left(n-3\right)\right]⋮\left(n-3\right)\\ \Rightarrow7⋮\left(n-3\right)\\ \Rightarrow\left(n-3\right)\inƯ\left(7\right)\\ \Rightarrow\left(n-3\right)\in\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-4;2;4;10\right\}\)
Vậy \(n\in\left\{-4;2;4;10\right\}\)
Vì 5n-8 ⋮ n-3
⇒(5n-15)+7⋮n-3
⇒5(n-3)+7⋮n-3
Vì 5(n-3)⋮n-3 nên 7⋮n-3
⇒n-3∈Ư(7)
⇒n-3∈{1;7;-1;-7}
Lập bảng
n-3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |