Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng y= -4x
.
Tìm tất cả các giá trị thực của tham số \(m\) để khoảng cách từ điểm \(M\left(0;3\right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=x^3+3mx+1\) bằng \(\dfrac{2}{\sqrt{5}}\)
Cho hàm số \(y=2x^3+3\left(m-1\right)x^2+6\left(m-2\right)x-1\) với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
Cho hàm số y=f(x)=\(\left\{{}\begin{matrix}2x^3-3\left(m+1\right)x^2+6mx-2\left(x< =3\right)\\nx+46\left(x>3\right)\end{matrix}\right.\)
trong đó m,n thuộc R. Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y=f(x) có đúng ba điểm cực trị
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^3 - (3m +1).x^2 + (2m -1)x +m +1 . Có bao nhiêu số tự nhiên m<100 để đồ thị hs có hai điểm cực trị nằm về 2 phía của trục hoành.
Cho hàm số \(y=x^4-2m\left(m+1\right)x^2+m^2\) với m là tham số thực.
a) Tìm m để đồ thị hàm số trên có 3 cực trị tạo thành 3 đỉnh của tâm giác vuông
b) Tìm m để đồ thị hàm số trên có 3 cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
Tập hợp tất cả các giá trị thực của tham số m để hàm số \(y=\left|x^3-3x^2+m-4\right|\) có đúng 5 điểm cực trị là?
Cho hàm số \(y=x^4-2m^2x^2+1\left(1\right)\)
Tìm tất cả các giá trị m để đồ thị (1) có 3 điểm cực trị A,B,C và diện tích tam giác ABC bằng 32 (đơn vị diện tích)
Cho hàm số \(y=x^4-2mx^2+m-1\left(1\right)\) với m là tham số thực.
Xác định m để hàm số (1) có 3 điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành 1 tam giác có bán kính đường tròn ngoại tiếp bằng 1