Ta có:
4x2 = 3 + y2
\(\Leftrightarrow\) (2x)2 - y2 = 3
\(\Leftrightarrow\) (2x - y)(2x + y) = 3
....
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Ta có:
4x2 = 3 + y2
\(\Leftrightarrow\) (2x)2 - y2 = 3
\(\Leftrightarrow\) (2x - y)(2x + y) = 3
....
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
giải pt :
a,\(x^2+2x+3=\sqrt{x^2+3x}\)
b, Cho x,y là các số nguyên dương thỏa mãn x+y =2001
Tìm GTNN của \(P=\sqrt{2+xy}\)
Bài 1: Cho hàm số f(x) = ax5 + bx3 + cx có giá trị nguyên với mọi x nguyên và f(1), f(2), f(3) đạt giá trị lớn nhất khi a, b, c dương. Tìm a,b,c
Bài 2: Nếu x, y ∈ Z thỏa mãn 3x2 + x = 3y2 + y thì x - y; 2x + 2y + 1; 3x + 3y + 1 là các số chính phương
Dạ nhờ mọi người giúp dùm em bài này, em cảm ơn ạ
Câu 1: Giải phương trình và hệ phương trình
a) \(\sqrt{4x^2-4x+9}=3\)
b) \(\left\{{}\begin{matrix}3x-y=5\\2y-x=0\end{matrix}\right.\)
Câu 2:
a) Cho hai đường thẳng (d\(_1\)): y = 2x - 5 và (d\(_2\)): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d\(_1\)) và (d\(_2\)) cắt nhau tại một điểm trên trục hoành Ox
b) Rút gọn biểu thức: \(P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x > 0, x \(\ne\) 9, x \(\ne\) 25
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
Tìm m để hệ có nghiệm (x;y) thỏa mãn y=\(x^2\)
Bài 3 (1,5 điểm). Cho hàm số y = x ^ 2 có đồ thị (P). a) Vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy. X b) Tìm tất cả các giá trị của tham số m để tại hai điểm phân biệt sqrt(x_{1} + 2023) - x_{1} = sqrt(x_{2} + 2023) - x_{2} có để đường thẳng (d): y = (m - 2) * x + 3 cắt (P) hoành độ là X1, x thoả mãn sqrt(x_{1} + 2023) - x_{1} = sqrt(x_{2} + 2023) - x_{2}
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
cho x,y là hai số thực dương thỏa mản x3+y3=xy-\(\dfrac{1}{27}\)
tính giá trị của biểu thức p=\(\left(x+y+\dfrac{1}{3}\right)^3-\dfrac{3}{2}\left(x+y\right)+2021\)
Bài 1 : cho (P)\(y=x^2\) và (d) \(y=2mx-2m+2\)
Tìm m để (d) cắt (P) tại 2 điểm nằm ở 2 phía trục tung có hoàng độ \(x_1,x_2\) thỏa mãn \(x_1^2-21=6x_1x_2-x_2^2\)