H/s xác định `<=>{(x+2 >= 0),(x^2+x-2 \ne 0):}`
`<=>{(x >= -2),(x \ne 1,x \ne -2):}<=>{(x > -2),(x \ne 1):}`
`=>TXĐ` của `f(x)` là: `D=R\\(-2;+oo)uu{1}`
H/s xác định `<=>{(x+2 >= 0),(x^2+x-2 \ne 0):}`
`<=>{(x >= -2),(x \ne 1,x \ne -2):}<=>{(x > -2),(x \ne 1):}`
`=>TXĐ` của `f(x)` là: `D=R\\(-2;+oo)uu{1}`
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
Tìm tập xác định của hàm số sau đây :
a. y=\(\dfrac{2x}{x^3-1}\) b.y=f(x)=\(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x^3+x}\)
tìm tập xác định của hàm số
y=\(\dfrac{\sqrt{x-2}}{x+1}\)
Tìm tập xác định của hàm số:
d: \(y=\left\{{}\begin{matrix}\dfrac{x-3}{x-4};x< 0\\\sqrt{x+1};x\ge0\end{matrix}\right.\)
e: \(\sqrt[4]{\sqrt{x^2+2x+5}-\left(x+1\right)}\)
\(\dfrac{\sqrt{x-2}}{|x-4|+|x^2-4x|}\)tìm tập xác định của hàm số
1. Tìm hàm số xác định của các hàm số sau.
a) \(y=\dfrac{x}{x^2-3x+2}\)
b)\(y=\dfrac{x-1}{2x^2-5x+2}\)
c)\(y=\dfrac{x-1}{x^3+1}\)
d) \(y=\dfrac{1}{x^4+2x^2-3}\)
e) \(y=\sqrt{x+3-2\sqrt{x+2}}\)
tìm tập xác định của hàm số
a) y = \(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
b) y = \(\sqrt{x+\sqrt{x^2-x+1}}\)
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{3x-2}{2x+1}\)
b. \(y=\dfrac{x-1}{x^2+2x-3}\)
c. \(y=\sqrt{2x+1}-\sqrt{3-x}\)
Tìm tập xác định của các hàm số ?
a) \(y=-x^5+7x-3\)
b) \(y=\dfrac{3x+2}{x-4}\)
c) \(y=\sqrt{4x+1}-\sqrt{-2x+1}\)
d) \(y=\dfrac{\sqrt{x+9}}{x^2+8x-20}\)
e) \(y=\dfrac{2x+1}{\left(2x+1\right)\left(x-3\right)}\)
f) \(y=\dfrac{7+x}{x^2+2x-5}\)