1/ Tập xác định D = R
2/ Tập xác định D = R
3/ Tập xác định \(D=(-\infty;-4]\cup[1;+\infty)\)
4/ Tập xác định \(D=[\sqrt[25]{25};+\infty)\)
1/ Tập xác định D = R
2/ Tập xác định D = R
3/ Tập xác định \(D=(-\infty;-4]\cup[1;+\infty)\)
4/ Tập xác định \(D=[\sqrt[25]{25};+\infty)\)
1. Tìm hàm số xác định của các hàm số sau.
a) \(y=\dfrac{x}{x^2-3x+2}\)
b)\(y=\dfrac{x-1}{2x^2-5x+2}\)
c)\(y=\dfrac{x-1}{x^3+1}\)
d) \(y=\dfrac{1}{x^4+2x^2-3}\)
e) \(y=\sqrt{x+3-2\sqrt{x+2}}\)
tìm tập xác định của hàm số
a) y = \(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
b) y = \(\sqrt{x+\sqrt{x^2-x+1}}\)
1)tìm tập xác định:
a) Y=\(\frac{\sqrt{3-2x}}{\sqrt{1-x}}+\frac{\sqrt{2x+1}}{x}\)
b)Y=\(\frac{\sqrt{3x+5}}{x-2}+\frac{\sqrt{2x+3}}{\sqrt{4-x}}\)
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
tập xác định hàm số
a, y=\(\sqrt{x^2+x-4}\)
b , y = \(\frac{1}{x^2+1}\)
c , y=\(\frac{\left|2x-3\right|}{x^2+x+6}\)
d , y =\(\frac{1}{x^2-3x}\)
e , y =\(\sqrt{1-x}\) +\(\frac{1}{x\sqrt{1}+x}\)
f , \(\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g, y = \(\frac{x^2+1}{\sqrt{2-5}}\) + \(\frac{1}{x^2-1}\)
h , y= \(\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(\sqrt{6-x}\)+2x\(\sqrt{2x+1}\)
j, y = \(\sqrt{3+x}\) +\(\frac{1}{x^2-1}\)
k, y = \(\frac{1}{x^2+3x+3}\)+(x+2)\(\sqrt{x+3}\)
l, y =\(\sqrt[3]{\frac{3x+5}{x^2-1}}\)
Tìm tập xác định của hàm số sau
1 , \(y=\frac{x}{4+x^2}\)
2 , \(y=\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)
Tìm tập xác định của hàm số:
d: \(y=\left\{{}\begin{matrix}\dfrac{x-3}{x-4};x< 0\\\sqrt{x+1};x\ge0\end{matrix}\right.\)
e: \(\sqrt[4]{\sqrt{x^2+2x+5}-\left(x+1\right)}\)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
Tìm tập xác định của các hàm số sau: giải chi tiết
y = \(\frac{\sqrt{x^2-x+1}}{x-3}\)
y = \(\frac{x+4}{\sqrt{2x-1}-\sqrt{x}}\)
y = \(\frac{x^2+6}{\sqrt{3x-1}-\sqrt{2x}}\)