a/ \(n+9⋮n+4\)
Mà \(n+4⋮n+4\)
\(\Leftrightarrow5⋮n+4\)
Vì \(n\in N\Leftrightarrow n+4\in N;n+4\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+4=1\\n+4=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-3\left(loại\right)\\n=1\left(tm\right)\end{matrix}\right.\)
Vậy ...
b/ \(3n+40⋮n+4\)
Mà \(n+4⋮n+4\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+40⋮n+4\\3n+12⋮n+4\end{matrix}\right.\)
\(\Leftrightarrow28⋮n+4\)
Vì \(n\in N\Leftrightarrow n+4\in N;n+4\inƯ\left(28\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+4=1\\n+4=28\\n+4=2\\n+4=14\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-3\left(loại\right)\\n=24\\n=-2\left(loại\right)\\n=10\end{matrix}\right.\)
Vậy ...
c/ \(5n+2⋮2n+9\)
Mà \(2n+9⋮2n+9\)
\(\Leftrightarrow\left\{{}\begin{matrix}10n+4⋮2n+9\\10n+45⋮2n+9\end{matrix}\right.\)
\(\Leftrightarrow41⋮2n+9\)
\(\Leftrightarrow2n+9\inƯ\left(41\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2n+9=1\\2n+9=41\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=-4\left(loại\right)\\n=16\end{matrix}\right.\)
Vậy ..
b)3n+40n+4
=> vì \(\left(n+4\right)⋮\left(n+4\right)\)
=> \(\left(3n+12\right)⋮\left(n+4\right)\)
=> \(\left(3n+40-4x-12\right)⋮\left(n+4\right)\)
=> \(28⋮\left(n+4\right)\)
=> \(n+4\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
ta có bảng sau
n+4 | 1 | 2 | 4 | 7 | 14 | 28 |
n | -3 loại | -2loại | 0 | 3 | 10 | 24 |
vậy \(n\in\left\{0;3;10;24\right\}\)