a,(n+2)\(⋮\)(n-1)
(n+2)=(n-1)+3 \(⋮\)(n-1)
Vì (n-1)\(⋮\)n-1=>3\(⋮\)(n-1)
=>(n-1)\(\in\)Ư(3)={1;3}
Với n-1=1=>n=2
n-1=3=>n=4
Vậy n\(\in\){2;4}
b,(2n+7)\(⋮\)(n+1)
(2n+7)=(2n+2)+5\(⋮\) (n + 1)
(2n+2)+5 \(⋮\) ( n + 1)=2(n+1)+5\(⋮\)(n+1)
Vì (n+1)\(⋮\)(n+1)=>2(n+1)\(⋮\)(n+1)
Buộc 5\(⋮\)(n+1)=>(n+1)\(\in\)Ư(5)={1;5}
Với n+1=1=>n=0
n+1=5=>n=4
Vậy n\(\in\){0;4}
c; (3n+2)\(⋮\)(2n-1)
(2n-1)+(n+3)\(⋮\)(2n-1)
Vì (2n-1)\(⋮\)(2n-1)=>(n+3)\(⋮\)(2n-1)
Vì (n+3)\(⋮\)(2n-1)=>2(n+3)\(⋮\)(2n-1)
(2n+6)\(⋮\)(2n-1)
(2n+6)=(2n-1)+7\(⋮\)(2n-1)
Vì (2n-1)\(⋮\)(2n-1)=>7\(⋮\)(2n-1)
Vậy 2n-1ϵƯ(7)={1;7}
Với 2n-1=1=>2n=2=>n=1
2n-1=7=>2n=8=>n=4
Vậy n \(\in\){1;4}