Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
Cho x,y,p là các số nguyên dương p>1 sao cho mỗi số x2016 và y2017 đều chia hết cho p. Chứng minh rằng A=1+x+y không chia hết cho p.
1, tìm cặp số nguyên x;y sao cho x2y+x+y chia hết cho xy2+y+1
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
Tìm số hữu tỷ a và b sao cho
a, 6x^4-7x^3+ax^2+3x+2 chia hết cho x^2-x+b.
b, x^4+ax^2+b chia hết cho x^2-x+1.
c, 2x^3-5x^2+x+a chia hết cho x^2-3x+2.
d, 5x^3+4x^2-6x-a chia 5x-1 dư -3
Cho x,y là các số nguyên thỏa mãn \(\left(2x+y\right)^2+\left(x+4y\right)^2\) chia hết cho 3 .chứng minh rằng xy chia hết cho 9
Bài 6: Xác định hằng số a sao cho :
a,10\(x^2-7x+a\) chia hết cho 2x-3
b,\(ax^5+5x^4-9\) chia hết cho x-1