\(\dfrac{2n-1}{n+1}=\dfrac{2\left(n+1\right)-3}{n+1}=....\)
3 chia hết n+1
Ta có:
\(\frac{2n-1}{n+1}=\frac{2n+2-3}{n+1}=\frac{2\left(n+1\right)-3}{n+1}=\frac{2\left(n+1\right)}{n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy \(n\in\left\{0;-2;2;-4\right\}\)