tìm các số thực a,b sao cho đa thức x4+x2+1 chia hết cho đa thức x2 +ax+b với mọi x
cmr: với mọi số thực x,y,z,t ta luôn có bất đẳng thức sau:
\(4x^2+y^2+z^2+t^2\ge2x\left(y+z+t\right)\)
cmr: với mọi số thực x,y,z,t ta luôn có bất đẳng thức sau:
\(4x^2+y^2+z^2+t^2\ge2x\left(y-z+t\right)\)
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
@Akai Haruma
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
cmr \(\left(x-1\right)\left(x^3-1\right)\ge\)0 với mọi số thực x
từ đó cm \(a^4+b^4+c^4-\left(a^3+b^3+c^3\right)\ge\)0
với a,b,c là 3 số thực thỏa mãn a+b+c=3
a) CMR với mọi số thực x,y > 0 ta có \(x^3+y^3\ge xy\left(x+y\right)\)
b) Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1. CMR:
\(\frac{1}{a+b+4}+\frac{1}{b+c+4}+\frac{1}{c+a+4}\le\frac{1}{2}\)
Tìm hằng số a lớn nhất để BĐT sau đúng với mọi x,y,z dương
\(\frac{x}{\sqrt{y^2+z^2}}+\frac{y}{\sqrt{x^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}}\ge a\)
Tìm hằng số a lớn nhất để BĐT sau đúng với mọi x,y,z dương
\(\frac{x}{\sqrt{y^2+z^2}}+\frac{y}{\sqrt{x^2+z^2}}+\frac{z}{\sqrt{x^2+y^2}}\ge a\)