Ta có: \(\frac{8c+36}{c+7}=\frac{8c+56-20}{c+7}=\frac{8\left(c+7\right)}{c+7}-\frac{20}{c+7}=8-\frac{20}{c+7}\)
\(\Rightarrow\frac{8c+36}{c+7}\in Z\Leftrightarrow\frac{20}{c+7}\in Z\Leftrightarrow c+7\inƯ20\)
\(\Leftrightarrow c+7\in\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\)
Vậy \(\Rightarrow\frac{8c+36}{c+7}\in Z\Leftrightarrow\frac{20}{c+7}\in Z\Leftrightarrow c+7\inƯ20\)
\(\Leftrightarrow c+7\in\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\)
Vậy \(c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\) thì \(\frac{8c+36}{c+7}\) là số nguyên