Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Leftrightarrow3⋮a+1\)
Vì \(a\in Z\Leftrightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a+1=1\\a+1=3\\a+1=-1\\a+1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=2\\a=-2\\a=-4\end{matrix}\right.\)
Vậy ..