Tìm nghiệm của các phương trình sau trong khoảng đã cho
a) sin2x = -\(\frac{1}{2}\) với 0<x<π ;
b) cos(x-5) = \(\frac{\sqrt{3}}{2}\) với -π< x < π.
Giải phương trình
1 : sin2x = cos3x
2 : cos(2x - \(\frac{\text{π}}{4}\) ) + sin(x+ \(\frac{\text{π}}{4}\)) = 0
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
vẽ đồ thị hàm số \(y=\cot x\) rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng (−π;π)(−π;π) là nghiệm của mỗi phương trình sau :
1) \(\cot x=\frac{\sqrt{3}}{3}\) ; 2) \(\cot x=1\)
tìm m sao cho phương trình \(\frac{2\sin x-1}{\sin x+3}=m\) có đúng 2 nghiệm sao cho 0≤x≤π
Giải pt: sin ( 3x/4 - π/6 ) = 0
tìm m sao cho phương trình \(\frac{2\sin x-1}{\sin x+3}=m\) có đúng 2 nghiệm thỏa mãn điều kiện 0≤x≤π
số nghiệm của phương trình sin(x+\(\frac{\pi}{4}\))=1 thuộc đoạn [π;2π] là bao nhiêu ?
Giải các pt sau:
1. sin\(^2\) 2x = cos\(^2\) (x-π/4)
2. sin\(^2\)x + cos\(^2\)4x = 2