Bài 3. Cấp số nhân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\);       

b) \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right.\).

Hà Quang Minh
22 tháng 9 2023 lúc 11:17

a)

\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)

Do \(q =  \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \Leftrightarrow 6{q^2} - 15q + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)

Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} =  - 16\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} =  - 16\) và công bội \(q = \frac{1}{2}\).

b)

\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)

Chia vế với vế của (1) cho (2) ta được:

\(\begin{array}{l}\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{{65}}{{325}} \Leftrightarrow \frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow 1 + {q^6} = 5\left( {1 - {q^2} + {q^4}} \right)\\ \Leftrightarrow 1 + {q^6} = 5 - 5{q^2} + 5{q^4} \Leftrightarrow {q^6} - 5{q^4} + 5{q^2} - 4 = 0\end{array}\)

Đặt \({q^2} = t\left( {t \ge 0} \right)\). Khi đó phương trình có dạng:

\({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow t = 4 \Leftrightarrow {q^2} = 4 \Leftrightarrow q =  \pm 2\)

Với \(q =  - 2\) thế vào (2) ta được: \({u_1}\left( {1 + {{\left( { - 2} \right)}^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Với \(q = 2\) thế vào (2) ta được: \({u_1}\left( {1 + {2^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).

Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).

‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q =  - 2\).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết