c, \(n+\left(n+1\right)+\left(n+2\right)+...+\left(n+30\right)=1240\)
\(\rightarrow n+n+1+n+2+n+3+...+n+30=1240\)
\(\rightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\)
Từ 1 đến 30 có:
(30-1):1+1=30 (số)
\(\rightarrow31.x+\left(30+1\right).30:2=1240\)
\(31.x+31.15=1240\)
\(31.x+465=1240\)
\(31.x=1240-465\)
\(31.x=775\)
\(x=775:31\)
\(x=25\)
a) \(2+4+6+......+2n=210\)
\(\Leftrightarrow2\left(1+2+3+......+n\right)=210\)
\(\Leftrightarrow1+2+3+......+n=210:2\)
\(\Leftrightarrow1+2+3+......+n=105\)
\(\Leftrightarrow n\left(n+1\right):2=105\)
\(\Leftrightarrow n\left(n+1\right)=105.2\)
\(\Leftrightarrow n\left(n+1\right)=210\)
Vì \(210=14.15\) \(\Rightarrow n=14\)
b, \(1+2+3+...+x=210\)
\(\rightarrow x.\left(x+1\right):2=210\)
\(x.\left(x+1\right)=420\)
\(x.\left(x+1\right)=20.21\)
\(\rightarrow x.\left(x+1\right)=20.\left(20+1\right)\)
\(\rightarrow x=20\)
b) \(1+2+3+.....+n=210\)
\(\Rightarrow n\left(n+1\right):2=210\)
\(\Rightarrow n\left(n+1\right)=210.2\)
\(\Rightarrow n\left(n+1\right)=420\)
Mà \(420=20.21\) \(\Rightarrow n=20\)