a) c/m x+y ≥ \(2\sqrt{xy}\left(x,y\ge0\right)\)
b) cho a,b,c >0 thỏa mãn a+b+c =6 c/m
\(\left(\frac{6}{a}-1\right)\left(\frac{6}{b}-1\right)\left(\frac{6}{c}-1\right)\ge1\)
giải hpt
a)\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=3\\mx+y=-3\end{matrix}\right.\)(I)
a) giải hpt khi m=2
b) tìm m để hpt có nghiệm duy nhất thỏa mãn x>0
Cho 2 dường tròn (O1,5cm) và (O2,2cm) nằm ngoài nhau. 1 tiếp tuyền chung ngoài AB của 2 đường tròn, \(A\in(O_1),B\in\left(O_2\right)\) và 1 tiếp tuyến chung trong CD của 2 đường tròn, \(C\in\left(O_1\right),D\in\left(O_2\right)\). Tính độ dài đoạn nối tâm O1O2 biết AB=1,5 CD
giải hpt
a) \(\left\{{}\begin{matrix}\frac{5}{x-1}+\frac{1}{y-1}=10\\\frac{1}{x-1}-\frac{3}{y-1}=18\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{2}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{13}{6}\end{matrix}\right.\)
a)cho 1 ≤a ≤ 2 . c/m a+\(\frac{2}{a}\le3\)
b) cho x,y,z thỏa mãn 1 ≤ x ≤ y ≤ z ≤ 2
c/m (x+y+z) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{81}{8}\)
Câu 2: CHo biểu thức:
\(B=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{a-1}{a-2\sqrt{a}+1}\) ( với a> 0, a ≠ 1)
a) Rút gọn biểu thức B
b) Tính GT của B khi A = 3-2\(\sqrt{2}\)
(mink đag cần gấp)
Cho phương trình x2 - 2(m+1)x + m - 4 = 0 ( ẩn là x)
a) Tính đenta phẩy
b) Gọi x1,x2 là 2 nghiệm của phương trình. Chứng minh rằng biểu thức : A= x1(1-x2)+ x2 (1-x1)
cho hpt \(\left\{{}\begin{matrix}x-my=2\\mx-4y=m-2\end{matrix}\right.\)
a) giải hpt khi m=1
b)tìm m để hpt có ngh duy nhất thỏa mãn y>0