Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Diệp

\(\left\{{}\begin{matrix}x+my=3\\mx+y=-3\end{matrix}\right.\)(I)

a) giải hpt khi m=2

b) tìm m để hpt có nghiệm duy nhất thỏa mãn x>0

Akai Haruma
14 tháng 8 2019 lúc 18:45

Lời giải:

a)

Khi $m=2$ thì HPT trở thành:

\(\left\{\begin{matrix} x+2y=3\\ 2x+y=-3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=6\\ 2x+y=-3\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=9\)

\(\Leftrightarrow 3y=9\Rightarrow y=3\)

\(\Rightarrow x=3-2y=3-2.3=-3\)

Vậy HPT có nghiệm $(x,y)=(-3,3)$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x+my=3\\ y=-3-mx\end{matrix}\right.\)\(\Rightarrow x+m(-3-mx)=3\)

\(\Leftrightarrow x(1-m^2)=3+3m(*)\)

Để hệ ban đầu có nghiệm duy nhất thì $(*)$ cũng phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0\Leftrightarrow m\neq \pm 1$

Khi đó: $x=\frac{3+3m}{1-m^2}=\frac{3}{1-m}$

Để $x>0\Leftrightarrow \frac{3}{1-m}>0\Leftrightarrow 1-m>0\Leftrightarrow m< 1$

Vậy $m< 1$ và $m\neq -1$ .


Các câu hỏi tương tự
Đinh Diệp
Xem chi tiết
Đinh Diệp
Xem chi tiết
Đinh Diệp
Xem chi tiết
Curry
Xem chi tiết
Đinh Diệp
Xem chi tiết
RđCfđ
Xem chi tiết
Đinh Diệp
Xem chi tiết
Đinh Diệp
Xem chi tiết
????????????????
Xem chi tiết