\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=y^2\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-y^2=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-y^2=0\)\(\Leftrightarrow t^2+2t+1-y^2=1\)\(\Leftrightarrow\left(t+1\right)^2-y^2=1\Leftrightarrow\left(t+1-y\right)\left(t+1+y\right)=1\)\(\Leftrightarrow\left\{{}\begin{matrix}t+1-y=0\Rightarrow t=y\\t+1+y=0\Rightarrow t=-y\end{matrix}\right.\Rightarrow t=-y;y\Rightarrow t=y=0\)
Từ \(t=0\Leftrightarrow x^2+3x=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy ta có các cặp số thỏa mãn (0;0)(-3;0)