Tìm nghiệm nguyên của phương trình: \(x^2-25=y.\left(y+6\right)\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho \(x^4+y^4+z^4=3\). Tìm Max P = \(x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(x+z\right)\)
1. Cho \(x,y,z\in\left(0,1\right)\) và \(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\). Cmr: \(x^2+y^2+z^2\ge\frac{3}{4}\)
2. \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2+xyz=4\end{matrix}\right.\) Cmr: \(x+y+z\le3\)
3. \(x\ne-2y\). Min : \(P=\frac{\left(2x^2+13y^2-xy\right)^2-6xy+9}{\left(x+2y\right)^2}\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}2\left(x+y\right)+m\left|x\right|=2m+2\\m\left(5x+5y\right)-2\left|x\right|=m\end{matrix}\right.\). CMR nếu (x;y) là nghiệm của hệ phương trình thì (x+y-1)(5x+5y-1)=2|x|-x2
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Giair Hệ phương trình nghiệm nguyên : \(\left\{{}\begin{matrix}x+y+z=3\\x^3+y^3+z^3=3\end{matrix}\right.\)
cho hệ phương trình \(\left\{{}\begin{matrix}2\left(x+y\right)+m\left|x\right|=2m+2\\m\left(5x+5y\right)-2\left|x\right|=1\end{matrix}\right.\)
a) giải hệ phương trình với m=1
b) cmr nếu x,y là nghiệm của hệ phương trình thì \(\left(x+y-1\right)\left(5x+5y-1\right)=2\left|x\right|-x^2\)