Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
Các số dương x,y,z thỏa mãn điều kiện x+y+z=1.Tìm GTNN của biểu thức
F=\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
cho x,y,z >0 thoả mãn \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
tìm Max: \(P=\dfrac{x^2+y^2+z^2+14xyz}{4\left(x+y+z\right)+15xyz}\)
Các số thực dương x,y,z thỏa mãn điều kiện: x+y+z=1. Tìm giá trị nhỏ nhất của:
\(F=\dfrac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Bài 1: Cho a,b,c dương
a) Tìm Max \(P=\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\)
b) Tìm Max \(Q=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(c+a\right)^2}+\frac{c^2}{5c^2+\left(a+b\right)^2}\)
Bài 2: Cho x,y,z là các số thực không âm thỏa mãn \(x+y+z=\frac{3}{2}\).Chứng minh rằng \(x+2xy+4xyz\le2\)
Bài 3: Cho a,b thỏa mãn \(\left(x+y\right)^3+4xy\ge2\). Tìm Min \(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1\)
Bài 4: Cho x,y,z >0: \(x\left(x+y+z\right)=3yz\). Chứng minh: \(\left(x+y\right)^3+\left(x+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)
Bài 5:Cho a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). CMR: \(a+b+c\le3\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z+\sqrt{xyz}=4\). Rút gọn biểu thức: \(A=\sqrt{x.\left(4-y\right).\left(4-z\right)}+\sqrt{y.\left(4-z\right).\left(4-x\right)}+\sqrt{z.\left(4-x\right).\left(4-y\right)}-\sqrt{xyz}\)
Tìm Min,Max P= x+y+z
Biết x, y, z là 3 số thực TM
\(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
1. Giải hpt: \(\left\{{}\begin{matrix}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2=26\end{matrix}\right.\)
2. Cho x,y,z là nghiệm của hpt : \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{matrix}\right.\) . Tính \(A=x+y+z\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)