Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Tiền Châu

Tìm nghiệm >0 của hệ sau

\(\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)=1296\end{matrix}\right.\)

Phương An
28 tháng 10 2017 lúc 21:55

\(\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)=1296\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+1}=a;\dfrac{1}{y+1}=b;\dfrac{1}{z+1}=c\left(a,b,c>0\right)\)

\(\Rightarrow a+b+c=1\)

\(\dfrac{1}{x+1}=a\)
\(\Rightarrow x+1=\dfrac{1}{a}\)
\(\Rightarrow x=\dfrac{1}{a}-1=\dfrac{1-a}{a}=\dfrac{b+c}{a}\)

Tương tự, ta có: \(y=\dfrac{a+c}{b};z=\dfrac{a+b}{c}\)

Đặt \(M=xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{abc}\times\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\times\dfrac{1}{abc}\)

\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{a^2b^2c^2}\times\left(\dfrac{b}{a}+\dfrac{a}{b}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{c}\right)\)

\(\ge\dfrac{8abc}{a^2b^2c^2}\times\left(2+2+2\right)\) (bđt AM - GM)

\(\ge\dfrac{8}{\dfrac{\left(a+b+c\right)^3}{27}}\times6=1296\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=2\)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Vũ Sơn Tùng
Xem chi tiết
michelle holder
Xem chi tiết
THÁNH TOÁN
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết