Giải:
Ta có: \(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;2;-2\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=2\Rightarrow n=1\)
+) \(n+1=-2\Rightarrow n=-3\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\)
n+3 chia hết cho n+1
<=> (n+1)+2 chia hết cho n+1
=> n+1 thuộc Ư(2)
Ta có :
Ư(2) = {1;2)
Nếu n+1=1
=> n = 0
Nếu n+1=2
=> n = 1
Vậy n thuộc {0;1}
=>
Để n+3 chia hết cho n+1 thì:
n+1+2\(⋮\)n+1
=> 2\(⋮\)n+1( vì n+1\(⋮\)n+1)
=> n+1\(_{\in}\)Ư(2)={1;2}
* Xét n+1=1=>n=0
*Xét n+1=2=>n=1
Vậy n\(_{\in}\){0;1}
n + 3 = (n + 1) + 2
Mà n + 1 chia hết cho n+1
Suy ra : 2 chia hết cho n + 1
Suy ra: n + 1 là Ư(2) = (1;2)
Suy ra : n thuộc (0;1)
Xong rồi đó bn
Ta có: \(n+3⋮n+1\)
\(\Rightarrow\left[\left(n+1\right)+2\right]⋮\left(n+1\right)\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
+/ \(n+1=-1\Rightarrow n=-2.\)
+/ \(n+1=1\Rightarrow n=0.\)
+/ \(n+1=-2\Rightarrow n=-3.\)
+/ \(n+1=2\Rightarrow n=1.\)
Vậy \(n\in\left\{-2;0;-3;1\right\}\)
Ta có: n + 3 \(⋮\)n + 1
\(\Rightarrow\) n + 1 + 2 \(⋮\) n +1
\(\Rightarrow\) 2 \(⋮\) n+1
\(\Rightarrow\) n + 1 \(\in\) {1; -1; 2; -2}
\(\Rightarrow\) n \(\in\) {0; 1; -2; -3}
Vậy: n \(\in\) {0; 1; -2; -3}
Ta có: n+3 chia hết cho n+1
=> n+3 = n+1+2
=> n+1+2 chia hết cho n+1
=>2 chia hết cho n+1
Theo đề ta có : \(\left(n+3\right)⋮\left(n+1\right)\)
\(\Rightarrow\left[\left(n+1\right)+2\right]⋮n+1\)
\(\Rightarrow2⋮\left(n+1\right)\) ( do (n+1)\(⋮\)(n+1) )
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Vậy \(n\in\left\{-3;-2;0;1\right\}\)