cho \(m,n\in Z\) sao cho
\(\dfrac{m}{n}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{426}+\dfrac{1}{427}\)
cmr:\(m⋮641\)
cho m,n thuộc Z sao cho
\(\dfrac{m}{n}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{426}+\dfrac{1}{427}\)
cmr m chia hết cho 641
Tìm tất cả số nguyên tố p, q sao cho tồn tại số tự nhiên m thỏa mãn:
\(\dfrac{pq}{p+q}=\dfrac{m^2+1}{m+1}\)
Tìm số tự nhiên n sao cho:
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
Cho 3 số thực a,b,c thõa : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
C/m : \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0.\)
Cm bài toán tổng quát :
giả sử a,b,c là các số thực thõa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}.\)
C/M : \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\forall n\in N.\)
Cho \(\left\{{}\begin{matrix}m,n>0\\x^2+y^2=1\\\dfrac{x^2}{m}+\dfrac{y^2}{n}=\dfrac{1}{m+n}\end{matrix}\right.\)
CMR \(\dfrac{x^{1005}}{m^{1004}}+\dfrac{y^{1005}}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Cho hình chữ nhật ABCD trên cạch AB ,BC,CD,AD lần lượt lấy các điểm M,N,P,Q sao cho \(\dfrac{AM}{AB}=\dfrac{BN}{BC}=\dfrac{CP}{CD}=\dfrac{DQ}{DA}=\dfrac{1}{3}\)
a,Chứng minh rằng MNPQ là hnhf bình hành
b,Gọi I là giao điểm của AN và AM .Chứng minh rằng \(\dfrac{IA}{AN}=\dfrac{3}{8}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).Tìm GTLN của biểu thức
\(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
tìm các số tự nhiên x,y,z sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)