Không mất tính tq giả sử \(x\ge y\ge z\)
\(\Rightarrow2=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{x}\Rightarrow x\le1\left(x\in N\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\text{(loại)}\end{matrix}\right.\)\(\Rightarrow2=1+\dfrac{1}{y}+\dfrac{1}{z}\Rightarrow\dfrac{y+z}{yz}=1\)
\(\Rightarrow y+z-yz-1=-1\)
\(\Rightarrow\left(1-z\right)\left(y-1\right)=-1\)\(\Rightarrow y=z=2\)