Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
:vvv

Tìm min và max của: \(A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)

missing you =
9 tháng 10 2021 lúc 20:58

\(dkxđ\Leftrightarrow\left\{{}\begin{matrix}-x^2+5x\ge0\\-x^2+3x+18\ge0\end{matrix}\right.\)\(\Rightarrow0\le x\le5\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\le5\end{matrix}\right.\)

\(\Rightarrow A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)

\(\sqrt{5x-x^2}=\sqrt{-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)}=\sqrt{-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\right]}=\sqrt{-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}}\ge0\left(1\right)\)

\(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)

\(\sqrt{-x^2+3x+18}=\sqrt{-\left(x^2-3x-18\right)}=\sqrt{-\left[x^2-3x+\dfrac{9}{4}-\dfrac{81}{4}\right]}=\sqrt{-\left(x-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}\ge\sqrt{-\left(5-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}=\sqrt{8}\left(2\right)\)

dấu"=" xảy ra \(< =>x=5\)

\(\left(1\right)\left(2\right)\Rightarrow A\ge\sqrt{8}\) \(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)\(\Rightarrow MinA=\sqrt{8}\)

\(\left(maxA=\sqrt{48}\right)dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=\dfrac{15}{7}\)

 

\(\)


Các câu hỏi tương tự
:vvv
Xem chi tiết
Linh Anh
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Big City Boy
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
ITACHY
Xem chi tiết
bach nhac lam
Xem chi tiết
Kim Trí Ngân
Xem chi tiết