Rút gọn các biểu thức sau:
a) A=\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}+\frac{2\sqrt{2}-\sqrt{6}}{\sqrt{2}}\)
b)B=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
Cho biểu thức \(Q=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right):\left(1-\frac{2\sqrt{x}}{x+1}\right)\) với \(x\ge0;x\ne1\) .
a, Rút gọn Q.
b, Tìm x sao cho Q < 0.
với \(x\ge0;x\ne1\) cho biểu thức \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
1/ rút gọn biểu thức Q
2/ tìm x để \(\frac{1}{Q}=4\sqrt{x}-4\)
Cho \(P=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\) với \(x,y\ge0;xy\ne1\)
Rút gọn P
Chứng minh biểu thức sau:
Bài 1: \(A=\frac{2x+4\sqrt{x}+2}{\sqrt{x}}\left(x\ge0,x\ne1\right)\)
Chứng minh rằng \(A>6\)
Bài 2: \(B=\frac{2}{x+\sqrt{x}+1}\left(x>0,x\ne1\right)\)
Chứng minh rằng \(0< B< 2\)
P = (1 - \(\frac{2\sqrt{x}}{x+1}\)) : (\(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}+x+1}\left(x\ge0,x\ne1\right)\)
a, Rút gọn P
b, Tìm giá trị của P khi x = \(2020-2\sqrt{2019}\)
Cho biểu thức: \(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)
a, Rút gọn biểu thức M.
b, Tìm x để \(M< \frac{1}{2}\)
Rút gọn và tìm GTLN của
\(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{3}\left(x\ge0;x\ne1\right)\)