\(B=4x-x^2\)
\(B=-\left(x^2-4x\right)\)
\(B=-\left(x^2-4x+4\right)+4\)
\(B=-\left(x-2\right)^2+4\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+4\le4\forall x\)
hay \(B\le4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Rightarrow x=2\)
Vậy \(MAX_B=4\Leftrightarrow x=2\)
B = 4x - x2 = - (x2 - 4x + 4) + 4 = -(x - 2)2 + 4
B lớn nhất \(\Leftrightarrow\) (x - 2)2 nhỏ nhất \(\Leftrightarrow\) (x - 2)2 = 0 \(\Leftrightarrow\) x = 2
Vậy Max B = 4 \(\Leftrightarrow\) x = 2