Lời giải:
Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:
\(\Delta=(2-m)^2-4(m+3)>0\)
\(\Leftrightarrow m^2-8m-8>0(*)\)
Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)
ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)
\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)
\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)
\(\Rightarrow 2m^2-15m-13=0\)
\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn