Tìm m để phương trình sau có 5 nghiệm phân biệt thuộc khoảng \(\left(-\dfrac{\pi}{2};3\pi\right)\)
2sin2x - (5m + 1)sinx + 2m2 + 2m = 0
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?
Có bao nhiêu m nguyên để pt có nghiệm
a) \(sin^6x+cos^6x+3sinx.cosx-\dfrac{m}{4}+2=0\)
b) \(\left(sinx-1\right)\left[2cos^2x-\left(2m+1\right)cosx+m\right]=0\) có 4 nghiệm phân biệt \(\in\left[0;2\pi\right]\)
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
Xác định m để phương trình \(6cos^2x+\left(9m-7\right).cosx-6m+2=0\) có đúng 3 nghiệm phân biệt \(x\in\left(0;\dfrac{3\pi}{2}\right)\)
Tìm nghiệm dương nhỏ nhất của phương trình
\(\cos\pi\left(x^2+2x-\dfrac{1}{2}\right)=\sin\left(\pi x^2\right)\)
Nghiệm của phương trình \(sin^4x+cos^4x+cos\left(x-\dfrac{\pi}{4}\right).sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
Giải phương trình:
1) \(cos\left(2x + \dfrac{\pi}{6}\right) = cos\left(\dfrac{\pi}{3} - 3x\right)\)
2) \(sin\left(2x + \dfrac{\pi}{6}\right) = sin\left(\dfrac{\pi}{3} - 3x\right)\)