Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
Cho x, y, z đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(y+z\right)=1\). Tìm Min
\(M=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\)
Tìm m để phương trình \(\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5=0\) có đúng hai nghiệm \(x_1,x_2\) thỏa mãn \(2< x_1< x_2\) .
Tìm m để tam thức \(f\left(x\right)=x^2-\left(m+2\right)x+8m+1\) đổi dấu 2 lần
Cho bất phương trình \(\sqrt{x-1}+\sqrt{5-x}+\sqrt{-x^2+6x-5}\ge m\) . Tìm giá trị lớn nhất của m để bất phương trình đúng với mọi x thuộc \(\left[1;5\right]\) .
tìm m để phương trình \(\left|x+2\right|+m\left|x-1\right|=3\) có nghiệm duy nhất
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm
Tìm m để phương trình có nghiệm
\(\left\{{}\begin{matrix}3x^2-2xy-y^2=5\\x^2+xy+2y^2=m\end{matrix}\right.\)