1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
Tìm m để hàm số :
a) \(y=x^4+\left(m^2-4\right)x^2+5\) có 3 cực trị
b) \(y=\left(m-1\right)x^4-mx^2+3\) có đúng một cực trị
1. có bn số nguyên m để y=\(\dfrac{mx+3}{3x+m}\) giảm trên \(\left(0;+\infty\right)\)
2. tìm m đẻ hs y=\(-x^3-6x^2+\left(4m-9\right)x+4\) giảm trên \(\left(-\infty;-1\right)\)
3. tìm m để y=\(x^3-mx^2+x+1\) tăng trên \(\left(0;+\infty\right)\)
Tìm m để hàm số :
a) \(y=x^3+\left(m+3\right)x^2+mx-2\) đạt cực tiểu tại \(x=1\)
b) \(y=-\dfrac{1}{3}\left(m^2+6m\right)x^3-2mx^2+3x+1\) đạt cực đại \(x=-1\)
tìm m để \(x^3+3x^2+\left(1-m\right)x+1\ge0\) ( mọi x >=0)
tìm m để pt có 2ng phân biệt \(\sqrt{x^2+mx+2}=2x+1\)
Cho hàm số :
\(y=x^4+mx^2-m-5\)
a) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho có ba điểm cực trị
b) Viết phương trình tiếp tuyến của \(\left(C_{-2}\right)\) (ứng với \(m=-2\)) song song với đường thẳng \(y=24x-1\)
Cho hs y= x^3-mx^2 +3(m-1)x+1 Tìm m để: a, Hs có cực đại cực tiểu |Xcd-Xct|=2 b, hs đạt cực đại tại x=2 c, hs đồng biến tren R d, hs đồng biến tren(1;dương vô cùng) e, hs nghịch biến trên đoạn có độ dài trên trục bằng 2
cho hàm số \(y=4x^3-6x^2+mx\) (1),với m là tham số thực.
a.khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =0
b.tìm m để đồ thị hàm số (1) có hai điểm cực trị đối xứng nhau qua đường thẳng \(2x-4y-5=0\)
Có bao nhiêu giá trị nguyên âm của tham số m để hàm số: y = x3 + mx - \(\dfrac{1}{5x^5}\) đồng biến trên khoảng (0; +\(\infty\))