Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huyền

tìm m để hàm số sau xác định\(\forall x\in\mathbb{R}\) :

y=\(\sqrt{sin^4x+cos^4x-2m\sin x\cos x}\)

Nguyễn Việt Lâm
29 tháng 5 2019 lúc 19:25

Để hàm số xác định \(\forall x\in R\Leftrightarrow sin^4x+cos^4x-2msinx.cosx\ge0\) \(\forall x\)

Ta có:

\(sin^4x+cos^4x-2msinx.cosx=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2-m.sin2x\)

\(=1-2\left(\frac{1}{2}sin2x\right)^2-msin2x=-\frac{1}{2}sin^22x-msin2x+1\)

Xét \(f\left(t\right)=-\frac{1}{2}t^2-mt+1\) với \(t\in\left[-1;1\right]\)

\(f\left(-1\right)=\frac{1}{2}+m\) ; \(f\left(1\right)=\frac{1}{2}-m\)

Để \(f\left(t\right)\ge0\) \(\forall t\in\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\f\left(1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\frac{1}{2}\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)


Các câu hỏi tương tự
Nguyễn Huyền
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
Big City Boy
Xem chi tiết
Gia Hân Lưu
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
vvvvvvvv
Xem chi tiết
A Lan
Xem chi tiết