Bài 1: Lũy thừa

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Trang

tìm m để hàm số có đúng 1 tiệm cận : y = \(\dfrac{2x-1}{\left(mx^2-2x+1\right)\left(4x^2+4m+1\right)}\)

Akai Haruma
29 tháng 7 2017 lúc 0:07

Lời giải:

\(\bullet \) Nếu \(m=0\Rightarrow y=\frac{2x-1}{(1-2x)(4x^2+1)}=\frac{-1}{4x^2+1}\)

\(\lim _{x\rightarrow \infty}\frac{-1}{4x^2+1}=0\) , \(4x^2+1\neq 0\) với mọi $x$ nên đồ thị hàm số có đúng một tiệm cận ngang \(y=0\)

\(\bullet\) Nếu \(m\neq 0\) :

+) \(m=\frac{-1}{2}\) thì \(y=\frac{2}{(2x+1)(-x^2-4x+2)}\)

\(\lim _{x\rightarrow \infty}y=0\) nên ĐTHS có TCN $y=0$

\(2x+1=0\Leftrightarrow x=\frac{-1}{2}\) nên \(x=-\frac{1}{2}\) là TCĐ.

ĐTHS có nhiều hơn một tiệm cận (loại)

+) \(m\neq \frac{-1}{2}\) thì \((mx^2-2x+1)(4x^2+4m+1)\) là một hàm bậc 4 không có nghiệm \(\frac{1}{2}\)

Suy ra \(\lim _{x\rightarrow \infty}y=0\), ĐTHS có TCN $y=0$

Để ĐTHS chỉ có một tiệm cận thì \((mx^2-2x+1)(4x^2+4m+1)\neq 0\forall x\)

\(\Rightarrow \left\{\begin{matrix} \Delta_{1}'=1-m<0\\ \Delta_{2}=-(4m+1)<0\end{matrix}\right.\Rightarrow m>1\)

Vậy \(m=0\) hoặc \(m>1\)