1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
tìm giá trị của m để pt sau có nghiệm duy nhất
\(2x^2-\left|x\right|+m^2-1=0\)
giải và biện luận các pt
\(\left(x^2-3x+2\right)^2+\left(x^2-3x+2\right)=0\)
\(x^2-\left|x\right|+m=0\)
\(\left(1-m\right)x^2-2x+2m=0\)
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)=3}\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
câu 1
1 M=\(\frac{1}{2}\times\sqrt{32}-2\times\sqrt{50}+\frac{\sqrt{22}}{\sqrt{11}}+\sqrt{144}-\sqrt{25}\times\sqrt{4}-\frac{2}{\sqrt{3}-1}-\sqrt{3}+1\)
2 cho hpt a \(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\)
b\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\)
3 giải pt a 2x2 \(+\) 3x-5=0 b\(\sqrt{4x+4}=7\)
4 tìm gtrị của m để đths bậc nhất y=(2m\(+\)1)x-5=0 cắt trục hoành tại 1 điểm có hoành độ =-5
5 cho hpt\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\)(I)
xđ gtrị của m để nghiệm (x;y) của hpt (I) tm x\(+\)y=1
Bài 1: Cho biểu thức :
\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\left(x\ge0;x\ne9\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A ≥ 0
Bài 2:
a) Trong hệ trục tọa độ Oxy cho hai đường thẳng (d1) : y = (m2 -1)x + 2m (m là tham số) và (d2): y = 3x + 4. Tìm các giá trị của m để 2 đường thẳng song song với nhau.
b) Cho phương trình: x2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số). Tìm các giá trị của m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x12 - 2mx1 + 2m - 1)(x1 - 2) ≤ 0
Bài 3: Cho 3 số thực x,y,z thỏa mãn: x + y + z ≤ \(\frac{3}{2}\)
Tìm GTNN của biểu thức: \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
1. GIải các pt :
a) \(x^2-2\left(\sqrt{3}+\sqrt{2}\right)x+4\sqrt{6}=0\)
2. chứng minh rằng các pt sau luôn luôn có nghiệm
a) \(x^2-2\left(m-1\right)x-3-m=0\)
b) \(x^2+\left(m+1\right)x+m=0\)
c) \(x^2-\left(2m-3\right)x+m^2-3m=0\)
d) \(x^2+2\left(m+2\right)x-4m-12=0\)
e) \(x^2-\left(2m-3\right)x+m^2+3m+2=0\)
f) \(x^2-2x-\left(m-1\right)\left(m-3\right)=0\)
3. \(\left(a-3\right)x^2-2\left(a-1\right)x+a-5=0\)
Tìm a để pt có 2 nghiệm phân biệt