Để BPT vô nghiệm thì:
a/ \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta'=\left(m-3\right)^2+\left(2m^2+m-6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\3m^2-5m+3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-2< m< \frac{3}{2}\\3\left(m-\frac{5}{6}\right)^2+\frac{11}{12}< 0\end{matrix}\right.\)
Không tồn tại m thỏa mãn
b/ \(\left\{{}\begin{matrix}m+2>0\\\Delta'=\left(m-1\right)^2-4\left(m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2-6m-7< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>-2\\-1< m< 7\end{matrix}\right.\) \(\Rightarrow-1< m< 7\)