cho a,b,c ≥ 0 thỏa mãn a2 + b2 + c2 ≤ 8. Tìm GTLN của
\(M=4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
Cho a,b, c>0 thỏa mãn a+b+c=3.
CMR: \(\dfrac{a^3}{\left(a+1\right)\left(b+1\right)}+\dfrac{b^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{c^3}{\left(c+1\right)\left(a+1\right)}>=\dfrac{3}{4}\)
Tìm tất cả các bộ ba số (a;b;c) là các số nguyên dương thỏa mãn
\(a\le b\le c\) và \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=2\)
Cho 3 số a, b, c khác 0 thỏa mãn:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Tính P=\(\left(a^{23}+b^{23}\right)\left(b^5+c^5\right)\left(a^{1995}+c^{1995}\right)\)
cho a,b,c≠0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}\).
tính \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho ba số a, b, c khác 0 thỏa mãn \(a^3+b^3+c^3=3abc\) . Tính \(M=\left(\dfrac{a}{b}+1\right)\left(\dfrac{b}{c}+1\right)\left(\dfrac{c}{a}+1\right)\)
Rút gọn biểu thức :
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
Mình cần cách làm chứ kết quả thì mình biết rồi .
Cho 3 số thực a,b,c thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0. CMR
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
Tính giá trị của biểu thức với a,b,c khác nhau:
\(M=\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a-b\right)\left(b-c\right)}.\dfrac{\left(b+c\right)\left(c+a\right)}{\left(b-c\right)\left(c-a\right)}.\dfrac{\left(c+a\right)\left(a+b\right)}{\left(c-a\right)\left(a-b\right)}\)